Opportunistic Infections of the Colon in Inflammatory Bowel Disease

Dr SM Bigby
Laboratory Services,
Middlemore Hospital, Auckland
Second European Consensus on prevention, diagnosis and management of infections in IBD on behalf of the European Crohn's and Colitis Organisation (ECCO)

- Treatment of IBD revolutionized over past decade by immunomodulators
- Increased risk of opportunistic infections
- Often difficult to recognize
- Associated with appreciable morbidity and mortality

“Despite evidence of defective mucosal immunity, there is no proof of a systemic immune defect in patients with IBD in the absence of concomitant immunomodulator therapy.” ECCO

- Immunomodulators in IBD:
 - Corticosteroids (≥20 mg of prednisolone/day for ≥2 weeks), thiopurines, methotrexate, calcineurin inhibitors, anti-TNF agents, other biologics
- Relative risk of opportunistic infection increases with no of drugs:
 - 1x immunomodulator: 3x increased risk (OR 2.9, 95% CI 1.5–5.3)
 - 2+ immunomodulators used concomitantly: increases substantially (OR 14.5, 95% CI 4.9–43)
Opportunistic Organisms

Extra-intestinal

Viral
- Herpes family

Bacterial
- C. Difficile
- E. Coli
- Salmonella
- TB
- Etc

Intestinal

Parasites
- Strongyloides

Fungal
- Histoplasma
- Cryptococcus
- Candida
Herpes family: Colonic mucosal ulcers - PCR positivity rate

IC = immunocompetent, IBD = Inflammatory Bowel Disease
CMV – Epidemiology and Life Cycle

- Ubiquitous
- Transmitted in body fluid
- Prevalence: Australia:
 - seropositivity 1-59 years = 57% (National serosurvey 2006)

CMV seropositivity general population USA 1988-1994

Virus remains latent for life with potential to reactivate

Lancini 2014
Transmission

Primary Infection (Viraemia)

Seroconversion (Ig G detectable)

Viral clearance

Latent phase

Secondary Infection (usually reactivation; uncommonly reinfection)

Asymptomatic (majority)

Mononucleosis-type syndrome

Severely symptomatic (usually immuno-immature or immunosuppressed)

Modified from Lancini 2014
Transmission

Primary Infection (Viraemia; IgM detectable)

Seroconversion (Ig G detectable)

Viral clearance

Immune response – both cellular and humoral

Low avidity = more recent infection
High avidity = longer time from infection

Prince 2014
Latent phase

- Cellular immunity controls viral replication. **Incomplete clearance = latency**
- DNA in episomal form (non-integrated) in host cell nucleus
- **Minimal viral expression** and no viral particle production
- Present in low numbers in small proportion of mononuclear cells (frequency of 0.004 to 0.01% on ISH)
• Colon common site
• Often asymptomatic and self limiting
• Triggered by immunosuppression and inflammation
• Risk correlates with degree of immunosuppression
• Some suggest reactivation in immunocompetent hosts under-recognised
CMV Infection

Isolation of the CMV virus or detection of viral proteins or nucleic acid in any body fluid or tissue specimen

CMV Disease

Combination of:
(1) Clinical symptoms,
(2) Endoscopic mucosal lesions
(3) Demonstration of CMV infection in GIT

CMV Disease requires evidence of end organ damage

Ljungman 2002
Case presentation

• Young woman with autoimmune disease
• On several immunomodulators with azathioprine added in months prior to presentation
• Developed abdominal symptoms over several months
• Post admission experienced significant rectal bleed requiring resuscitation
• Surgery - bowel grossly unremarkable
• On table endoscopy – markedly abnormal segment of small bowel - resected
Jejunum, 260mm
Polypoid mucosa along entire length of specimen
Inflamed and oedematous mucosa with pseudopolyps
- Multiple broad shallow ulcers
- No deep fissuring ulcers
- No transmural lymphoid aggregates
- No granulomas
Multiple large atypical cells in ulcer bed
Numerous CMV positive cells on immunohistochemistry
Diagnosis: CMV Enteritis

- IV valgancyclovir then oral valgancyclovir for 3/12
- Viral load decreased (6946 IU/ml to “not detected” at 2/12)
- Symptoms resolved
- Remains well at follow up (10/12)
- No evidence of IBD
CMV Enteritis/Colitis - a clinical and histological mimic

- Clinically and endoscopically mimics IBD and other infections
- Overlap in histological features:
 - Crypt architectural distortion
 - Basal plasmacytosis
 - Active inflammation – incl deep fissuring ulcers
 - Pseudopolyps
 - Vasculitis of submucosal vessels, ischaemia
 - Necrosis
What is the Role of CMV in IBD?

Whether or not CMV promotes inflammation in IBD is an on-going controversy with multiple studies over 5 decades

Cytomegalic Inclusion Disease and Ulcerative Colitis.
Report of a Case in a Young Adult.

Direct causative role of CMV in IBD never confirmed and considered unlikely.
Prevalence of reactivated CMV in blood and tissue more common in IBD patients (20x more in UC patients than controls on PCR GIT tissue)

Is the presence of reactivated CMV a consequence of the IBD-related inflammation (and a surrogate marker of severe disease)?

ie: Innocent bystander

or

Does CMV exacerbate inflammation and contribute to adverse outcome in infected patients (and therefore requires treatment)?

ie: Active pathogen

Dimitroulia 2006
• Many studies, small sizes
• Multiple different definitions. *(e.g.: Terms “CMV infection” and “CMV disease” used interchangeably?*
• Variation in tests
• Different sensitivities, no consistent viral load cut off....
• Heterogeneous patient populations
• No validated definition of outcome (clinical response or relapse)

No single gold standard exists for (clinically relevant) CMV infection in IBD
However, the collective evidence suggests..........

CMV-positive IBD patients have worse outcome than CMV-negative patients

• Increased risk of colectomy
• Risk of hospitalisation
• Increased duration of hospitalisation
• Increased mortality

ECCO: “CMV colitis mimicking an acute exacerbation of ulcerative colitis (UC) or Crohn's disease (CD) is associated with a poor outcome and a higher colectomy rate.”
Severe local inflammation causes local upregulation of proinflammatory cytokines. Inflammatory cascade TNF-α and IFN-γ recruit monocytes (including those with latent CMV) to inflamed mucosa. Monocytes transformed into macrophages. CMV replication triggered.

Further cytokines released (IL-6). Local Inflammation and viral replication propagated.

Mechanism of mucosal reactivation

Worsening of colitis and treatment resistance

Modified from Goodman
CMV detection rates vary according to severity of colitis

Detection of CMV negligible in normal mucosa, inactive or mild to moderate colitis

Even in the presence of immunomodulators

Reactivated CMV detected in about 30% of severe and/or steroid-refractory UC

Even in the absence of immunomodulators

Domenech 2008; Kojima 2006; Roblin 2011; Zidar 2015
Viral load (IHC): Mildly-moderately inflamed mucosa vs ulcerated mucosa
UC vs Crohns (CD)

- Seroprevalence similar to general population in both UC and CD
- Multiple studies report that CMV reactivation more common in UC than CD (but remains controversial)
- Estimated 10-fold increase in CMV colitis in UC compared to CD
- Difference attributed to differential cytokine profiles

UC:
TNF-α production prominent – stimulates CMV reactivation

Crohns:
T helper cell 1-mediated (IFN-γ) pathway more prominent - suppresses CMV reactivation

McCurdy 2015; Nakase 2010
4 questions……….

For Pathologists:
How do we diagnose CMV reactivation accurately in colonic tissue of IBD patients?

For Clinicians:
1) How does colonic CMV infection impact evolution of IBD?
2) How do we identify patients at risk of an unfavorable outcome?
3) Does antiviral therapy improve the long-term outcome of IBD (given that it is a toxic medication and many patients resolve spontaneously)?
<table>
<thead>
<tr>
<th>Test</th>
<th>Characteristics</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serology</td>
<td>Detects previous infection and identifies “at-risk” patients</td>
<td>98-100%</td>
<td>96-99%</td>
</tr>
<tr>
<td>Antigenic assay</td>
<td>Detects viral protein pp65 in leucocytes. Does not distinguish latent and active infection. Superseded by PCR</td>
<td>60-100%</td>
<td>83-100%</td>
</tr>
<tr>
<td>Histology H&E</td>
<td>Sensitivity depends on site and no of biopsies</td>
<td>10-87%</td>
<td>92-100%</td>
</tr>
<tr>
<td>Histological IHC</td>
<td>Gold standard</td>
<td>Up to 93%</td>
<td>92-100%</td>
</tr>
<tr>
<td>CMV DNA PCR</td>
<td>Rapid</td>
<td>92-96.7%</td>
<td>93-98.7%</td>
</tr>
<tr>
<td></td>
<td>Clinical meaning of positivity is unclear - infection or disease? Need cut-off of viral load to determine relevance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culture (Blood, tissue, stool)</td>
<td>Takes 2-4 weeks for results</td>
<td>45-75%</td>
<td>89-100%</td>
</tr>
</tbody>
</table>
• Typical CMV-infected cells
 • Large with cytomegalic inclusion bodies with a halo ("owl’s eye" appearance)
 • represent active CMV replicating nucleoprotein cores
 • similar inclusion body in cytoplasm
• No inclusions seen in up to 38% of patients with gastrointestinal CMV disease

“Cyto” = cell
“Megalo” = large
CMV IHC

- IHC improves detection
- Targets viral proteins expressed during replication (ie: detects active CMV)
 - Nuclear expression = antigens expressed during early and intermediate replication
 - Cytoplasmic expression = antigens expressed during late stages of replication
PCR

Pros:
• Rapid and flexible (blood, tissue or stool)
• Very sensitive - detects CMV at an earlier stage of replication than IHC
• Can quantify viral load
• CMV viral load in blood largely correlates with risk of symptomatic CMV disease (Transplantation literature)

Cons:
• Blood PCR does not confirm tissue infection and tissue confirmation required
• Main criticism of colonic tissue PCR
 • Is overly sensitive
 • Postulated to detect latent and mild reactivation of CMV of no clinical relevance
ECCO: Consensus Statement

In patients with **acute steroid-resistant colitis**, CMV should be excluded, preferably by **tissue PCR or immunohistochemistry**, before increasing immunomodulator therapy [EL3].

- **Sensitivity:** PCR >>> IHC in most studies (*Detection using PCR = 60% vs IHC = 6%, Yoshino et al*)
- **Viral load to identify clinically relevant CMV:** Not yet established
- **Cost:** Tissue IHC ($40) vs PCR ($210)
What viral load is significant?

Biopsy IHC:

- No consensus on significant cut off levels
 - Low density: suggested 1-3 CMV + cells/slide
 - High density: suggested >2-5 CMV + cells/slide

Biopsy PCR:

- CMV DNA load > 250 copies/mg in tissue predictive of adverse outcome (treatment resistance, increased hospitalisation)

Beswick 2016; Liao 2016; Roblin 2011
“…..the recent data suggests that using IHC positivity (the more inclusion bodies found per biopsy fragment, the greater diagnostic likelihood of CMV disease) is preferable as this appears to best correlate with CMV disease, and/or at least a high probability of CMV pathogenicity, thus providing the most discriminative guidance as to whether to instigate antiviral therapy.”

Tissue IHC should be supported by CMV PCR on blood

(1) Appears to correlate with colitis

(2) Enables viral quantification and where high, supports treatment

(3) Can be used to assess response to treatment

(4) But a minority of patients will have CMV colitis with negative blood PCR
So how should we pathologists report our findings?

• High index of suspicion - severe activity/refractory to treatment
• CMV IHC on biopsies with severe activity/ulceration (not normal/mild colitis)
• Document the viral load (organisms/slide)

DIAGNOSTIC SUMMARY

BIOPSY SIGMOID COLON:
1) **SEVERE CHRONIC COLITIS WITH SEVERE ACTIVITY**
2) **CMV DETECTED BY IMMUNOHISTOCHEMISTRY**

The rest is up to the clinician........